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=PFL Motivation for task-driven models

= We have seen that external information can be efficiently represented in the
brain

= We have also considered the first “representation learning model” of this
class: sparse coding

= Sparse coding is a powerful model and e.g. predicts simple cells for vision
= However, it's based on a reconstruction loss, not a computational task ...

= These kinds of approaches typically work best for well-parametrized stimulus
regimes, but do not work well for many ecological behaviors



=PrL Normative frameworks

Information theoretic Utilitarian
e.g. sparse coding, e.g. recognize objects,
redundancy reduction, chase prey, navigate ...

mutual information ...




=PrL

Today’s questions:

1.

How to engineer neural systems
for path integration? -> ring attractors

How to learn path integration
from scratch?

Are the solutions related?

Recurrent neural networks
and path integration




=P"L  Recurrent neural network (RNN)
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=P"L  Recurrent neural network (RNN)
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=P7L Altemative depictions in the literature

Often (in the computational neuroscience literature) recurrent neural network models are depicted as in the two figure below.

Single condition

Single condition EMG

input

Sorscher et al. Neuron 2022 Susillo et al. Nature Neuro 2015

Here with input connectivity M, recurrent connectivity J
and output connectivity W.
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Intermediate summary

= Path integration is a key component of navigation

= Attractor models can perform path integration to explain (in a model) the
head-direction, and grid cell system

= They make non-trivial predictions (see later)

= This is one of the first examples for a “brain-like circuit for intelligence”
in this class.



=PrL

Can such attractor
models also be leamed
from the goal to navigate?
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Hausmann & Marin-Vargas et al. 2021



=PFL  Recurrent neural network (RNN)

Recurrent dynamics:  x; = F(xt_q, U, 0)
Generic RNN: Xt = Wyeeo(Xt_1) + Wipue + b 0 = Wyoe, Win, b

For some task, where we want to predict: & = L(x;)
T

The cost weights the individual costs per step: €= z &t
t=1

How can we find parameters 6 to minimize & ?

Pascanu, Mikolov & Bengio 2012



=F*L " Training recurrent neural networks

Backpropagation Through Time (BPTT)

E! 1 lg: E!+1

“ Gy “ o N %)
Xt = Wreea(xe—1) + Winue + b —'J:‘I-ftlzi:lT—'

T
% _ 2 % Total loss gradient is the sum
a0 £ a0 of gradients at each step.
t
U the ch | & Z 0g; 0xp 07 xk
sing the chain rule: —
ng inru ae axtaxk ae
How does 9 atstep k Do not propagate gradients
impact later stepst > k beyond this depth

How is loss € impacted

Treat x;,_4 as constant with
= by hidden state x

reSpeCt tO differentiating 0 Pascanu, Mikolov & Bengio 2012



=F*L " Training recurrent neural networks

Backpropagation Through Time (BPTT)

&y & Ein

g e I} g

Xp = Wheeo(Xemr) + Wity +b =[x =[x o 2 Joe

[, ¥ Xy

i s
ey T a%e -1 T iy I T

Problems:

Vanishing or exploding gradients

Difficult to track long-range dependencies
Solutions:

Gating (LSTM, GRU)

= * Feed-forward context integration (Transformers)

Pascanu, Mikolov & Bengio 2012



=Pt Amodel for path integration in mammais

place cell target p; (t)

Place cell centers O _—

. . Note that t
a | — Simulated trajectory / ode I'ad' etl

T al model IS directly

== Decoded position vV O trained to report
place cells.
\) Not really a

O w

normative task.

£ d
& J
recurrency
n
Y
e+ 1) =0 | Y i1y (0 + Mive (6) + My, (6)
v J=1
velocity inputs &
n weight matrices
& 22m > -
i (0 =) Wyr (0)
j=1
= linear projection to place cells

Sorscher & Mel et al. Neuron 2023
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=F7L Reminder: “Mexican-hat” connectivity
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Population of Head Direction Cells

https://en.wikipedia.org/wiki/Sombrero

Local excitation, midrange inhibition
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=F7L Mexican-hat connectivity In a hand-designed model

Idealized hand-designed model

Stable activity patterns on the neural sheet when the
animal is at 5 successive positions in physical space.

Average outgoing connectivity profile:

* Local excitatory connections (red)

* Long-range inhibitory connections (blue)
* Very local self-excitation (right, yellow)

excitation

[ |
inhibition

Sorscher & Mel et al. Neuron 2023



=P7L " Implicitly the model /earms Mexican-hat connectivity

Idealized hand-designed model Learned model
A ..0.... - E sort
B F
ddh » » .> " ' . ,-’..".'\'
» - ) a > - < - o . %3 aiBs
e — - —
C J J G J J
excitation
[ |
inhibition

Sorscher & Mel et al. Neuron 2023



=PFL Implicitly the model leams a shift-circuit

Idealized hand-designed model

excitation

[ |
inhibition

Sorscher & Mel et al. Neuron 2023



=PFL Implicitly the model leams a shift-circuit

Idealized hand-designed model Learned model

excitation

[ |
inhibition

Sorscher & Mel et al. Neuron 2023



Take-home messages part 1

= First glimpse at task-driven modeling, we’ll see more in the next weeks

= Attractor models are powerful models of brain function (and make several
non-trivial predictions that turn out to be true)

= Path integration is an important brain function and in mammals; the
hippocampal formation supports this computation via specialized cell types

= We also highlighted recent circuits in Drosophila and zebrafish (last time)

= Attractor models can implement path integration, and learning to path
Integrate converges to similar solutions (with the right constraints)

= Attractor models are a first “brain-like circuit” in this class. Think about how
this system computes vs., e.g., a CPU.

You will implement the Sorscher & Mel et al. model in the exercises!
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=PrL Normative frameworks

Information theoretic Utilitarian
e.g. sparse coding, e.g. recognize objects,
redundancy reduction, chase prey, navigate ...

mutual information ...




=PrL Temporal and spatial scales in neuroscience

Environment
Organism
Brain
System

Circuit

Spatial scale

Neuron
Synapse

Molecule

Millisecond Second Minute Hour Day Month Year
Timescale

- Basset, Nat Neuro 2017



=P7L Temporal and spatial scales in neuroscience

Environment
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Circuit
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Basset, Nat Neuro 2017



=PrL

Task-driven modeling: linking behavior to circuits

Environment
Organism
Brain
System
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Machine learning

Architecture
Task / objective
Dataset

Optimization method (learning
rule)

ML model



=PrL

Machine learning Neuroscience

Architecture
Task / objective
Dataset

Optimization method (learning
rule)

ML model
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Using deep neural networks as goal-driven models of a system

Model architecture class

>
e -
L ¥
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Vision: object recognition. Yamins & DiCarlo (2016)
Yamins & Hong et al. (2014), Schrimpf &
Kubilius et al. (2018) ’-ATa—- Language: next-word prediction.

Audition: speech recognition, speaker & - —— Schrimpfetal. (2021)

sound identification. Kell et al. (2018) Decision making: context-dependent
Somatosentation: shape recognition. choice. Mante & Sussilo et al. (2013)

‘!

|

Zhuang et al. (2017) Proprioception: action recognition.
g Sandbrink et al. (2023)

D



EPFL  peminder: Explaining edge detectors with sparse autoencoding
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Olshausen & Field, 1996 Nature



=F7L Object recognition

= Recognizing objects seems easy, but
* We can recognize objects among thousands of possibilities
» we do so in the fraction of a second (Thorpe et al., 1996)
» we do so despite tremendous variation (size, angle, ...)

= Recognizing objects must be hard,

 Half of the primate neocortex is devoted to vision (Felleman & Von Essen,
1991)

» Despite all CV advances, machines still struggle with robust vision! I.e. on
benchmarks like ImageNet, they are as good/better than humans but they
are subject to adversarial robustness



=P7L  Visual system
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Felleman and Van Essen Cerebral Cortex 1991



=P7L  Ventral visual pathway

Retina

{} ~10M
B (IT representation)
TP, AIT
~16 M
. mm
7a mp CIT >
I ——

]l il
~36M

EI

~29 M (V2 representation)

LGN

~37 M (V1 representation)
~190 M

o ﬁ ~1M (LGN representation)

Retina ﬁ ~1 M (RCG representation)

Latency

~100ms

~90 ms

~80ms

~70 ms

~60ms

~50ms

~40 ms

DiCarlo, Neuron 2012



=PFL " Increasing
complexity along
the visual ventral
stream

RF Size (°) Latency (ms)

80-100

5.8 70-90

Increasing complexity, RF size,
invariance to visual transformations

48 60-80

50-70

40-60

Kravitz et al. 2012



https://pmc.ncbi.nlm.nih.gov/articles/PMC3532569/

IT neurons are nonlinear

=PrL

Example neuron

Wang, Tanifuji, Tanaka 1998



=PrL

What does IT do?

Single neuron response
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=PrL

How can we achieve Iinvariance (to viewing
parameters) & selectivity to identity?



7L Sketch of the HMAX model.

This model is an extension of Hubel &Wiesel’s complex cell model
and earlier work by Fukushima (Neocognitron).

QO &
=l

=== MAX

View-tuned cells

Complex composite cells (C2)

Composite feature cells (52)

Complex cells (C1)

Simple cells (S1) These two types of operations (max
and linear sum) provided pattern
specificity and invariance to
translation, by pooling over afferents

weighted:sum tuned to different positions, and to

scale (not shown), by pooling over
afferents tuned to different scales.

Riesenhuber & Poggio, Nat Neuro 1999



=P*L " Highly nonlinear response properties

IT recordings Model predictions (with max vs. sum)
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=F7L  Example higher-order visual cortex responses

Site 5

Site 4

Mean response
(spikes / sec)

Animals Boats Cars Chairs Faces Fruits Planes Tables

pd

(spikes / sec)

Animals Boats Cars Chairs Faces Fruits Planes Tables

Examples of IT neuronal spiking responses

Mean response

(1600 images tested here)

Slide from Jim DiCarlo, MIT



=PFL  Core-object recognition paradigm

a Testing image set: 8 categories, 8 objects per category
Planes Tables Low variation

. a el .-+ 640 images
Medium variation

q ) ' --- 2560 images

High variation
‘ /Y ’ .- 2560 images
b Screening image set: 9 categories, 4 objects per category

Bodies Buildings Flowers Guns Instruments Jewelry Shoes Tools Trees

PR (PR

Hong & Yamins et al., NatNeuro 2016




=PFL Decoding object identity from neural data

) e High variation
Medium variation

Low variation 4
= — . -+ 640 images q / ' -+ 2560 images \ /y ’ -+ 2560 images

Increasing difficulty

Increasing gap between V4 and IT

o

0r

Performance

20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 100 20 40 60 80 100 120 140 160

Number of Neural Sites

Hong & Yamins et al., NatNeuro 2016



L Take-home messages part 2

Visual pathway: increased invariance to variations in viewpoint, culminating in most
complexity in inferotemporal cortex (IT)

Object preferences in IT

Increased performance in object decoding with more IT sites (but not V4)

Normative models in vision: learn neural activity via behavior

HMAX as an early model of hierarchical invariance via simple and complex cells



