
NX-414: Brain-like computation and 
intelligence

Martin Schrimpf

Lecture 4, March 12



▪ We have seen that external information can be efficiently represented in the 
brain

▪ We have also considered the first “representation learning model” of this 
class: sparse coding

▪ Sparse coding is a powerful model and e.g. predicts simple cells for vision

▪ However, it’s based on a reconstruction loss, not a computational task … 

▪ These kinds of approaches typically work best for well-parametrized stimulus 
regimes, but do not work well for many ecological behaviors

Motivation for task-driven models



Information theoretic

e.g. sparse coding, 
redundancy reduction, 
mutual information …

Utilitarian

e.g. recognize objects, 
chase prey, navigate …

Normative frameworks



Recurrent neural networks
and path integration

Recap: path integration is a 
fundamental ability that depends on 
accumulating velocity signals (from 
the vestibular, proprioceptive 
…senses) to form a representation 
where one is in space.

In mammals, head direction, grid and 
place cells have been implicated.

Today’s questions:

1. How to engineer neural systems 
for path integration? -> ring attractors 

2. How to learn path integration 
from scratch?

3. Are the solutions related?



Recurrent neural network (RNN)

..
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Recurrent neural network (RNN)

Rate + membrane equation
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Alternative depictions in the literature

Sorscher et al. Neuron 2022

Often (in the computational neuroscience literature) recurrent neural network models are depicted as in the two figure below.

Susillo et al. Nature Neuro 2015

Here with input connectivity M, recurrent connectivity J 
and output connectivity W. 



▪ Path integration is a key component of navigation

▪ Attractor models can perform path integration to explain (in a model) the 
head-direction, and grid cell system

▪ They make non-trivial predictions (see later)

▪ This is one of the first examples for a “brain-like circuit for intelligence” 
in this class. 

Intermediate summary



Can such attractor 
models also be learned 
from the goal to navigate?



Biological Intelligence Artificial Intelligence

Hausmann & Marin-Vargas et al. 2021



Recurrent neural network (RNN)

Recurrent dynamics: 𝑥𝑡 = 𝐹 𝑥𝑡−1, 𝑢𝑡, 𝜃

𝑥𝑡 = 𝑊𝑟𝑒𝑐𝜎 𝑥𝑡−1 +𝑊𝑖𝑛𝑢𝑡 + 𝑏Generic RNN: 𝜃 = 𝑊𝑟𝑒𝑐 ,𝑊𝑖𝑛, 𝑏

𝜀 =෍

𝑡=1

𝑇

𝜀𝑡

𝜀𝑡 = ℒ(𝑥𝑡) For some task, where we want to predict: 

The cost weights the individual costs per step:

How can we find parameters 𝜃 to minimize ? 𝜀

Pascanu, Mikolov & Bengio 2012



Backpropagation Through Time (BPTT)

Training recurrent neural networks

Pascanu, Mikolov & Bengio 2012
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𝜕𝑥𝑡
𝜕𝑥𝑘

𝜕+𝑥𝑘
𝜕𝜃

How does 𝜃 at step 𝑘
impact later steps 𝑡 > 𝑘

treat as constant.

𝑥𝑡 = 𝑊𝑟𝑒𝑐𝜎 𝑥𝑡−1 +𝑊𝑖𝑛𝑢𝑡 + 𝑏

Total loss gradient is the sum 
of gradients at each step.

Using the chain rule:

How is loss 𝜀 impacted 
by hidden state 𝑥

Treat 𝑥𝑘−1 as constant with 
respect to differentiating  𝜃

Do not propagate gradients 
beyond this depth



Backpropagation Through Time (BPTT)

Training recurrent neural networks

Pascanu, Mikolov & Bengio 2012

𝑥𝑡 = 𝑊𝑟𝑒𝑐𝜎 𝑥𝑡−1 +𝑊𝑖𝑛𝑢𝑡 + 𝑏

Problems:

• Vanishing or exploding gradients

• Difficult to track long-range dependencies

Solutions:

• Gating (LSTM, GRU)

• Feed-forward context integration (Transformers)



A model for path integration in mammals

𝑟𝑖 𝑡 + 1 = 𝜎 ෍
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velocity inputs & 
weight matrices

recurrency

linear projection to place cells

place cell target ෝ𝑝𝑖 𝑡

Sorscher & Mel et al. Neuron 2023

Note that the 
model is directly 
trained to report 
place cells.
Not really a 
normative task.



A model for path integration in mammals

+ nonnegative

Sorscher & Mel et al. Neuron 2023



Reminder: “Mexican-hat” connectivity 

https://en.wikipedia.org/wiki/Sombrero

Local excitation, midrange inhibition 



Mexican-hat connectivity in a hand-designed model

excitation

inhibition

Sorscher & Mel et al. Neuron 2023

Stable activity patterns on the neural sheet when the 
animal is at 5 successive positions in physical space.

Average outgoing connectivity profile:
• Local excitatory connections (red)
• Long-range inhibitory connections (blue)
• Very local self-excitation (right, yellow)

Idealized hand-designed model



Implicitly the model learns Mexican-hat connectivity

Sorscher & Mel et al. Neuron 2023

excitation

inhibition

Idealized hand-designed model Learned model



Implicitly the model learns a shift-circuit

Sorscher & Mel et al. Neuron 2023

excitation

inhibition

Idealized hand-designed model



Implicitly the model learns a shift-circuit

Sorscher & Mel et al. Neuron 2023

excitation

inhibition

Idealized hand-designed model Learned model



▪ First glimpse at task-driven modeling, we’ll see more in the next weeks

▪ Attractor models are powerful models of brain function (and make several 
non-trivial predictions that turn out to be true)

▪ Path integration is an important brain function and in mammals; the 
hippocampal formation supports this computation via specialized cell types

▪ We also highlighted recent circuits in Drosophila and zebrafish (last time)

▪ Attractor models can implement path integration, and learning to path 
integrate converges to similar solutions (with the right constraints)

▪ Attractor models are a first “brain-like circuit” in this class. Think about how 
this system computes vs., e.g., a CPU. 

You will implement the Sorscher & Mel et al. model in the exercises!

Take-home messages part 1



Biological Intelligence Artificial Intelligence

Hausmann & Marin-Vargas et al., 2021



Information theoretic

e.g. sparse coding, 
redundancy reduction, 
mutual information …

Utilitarian

e.g. recognize objects, 
chase prey, navigate …

Normative frameworks



Temporal and spatial scales in neuroscience

Basset, Nat Neuro 2017



Temporal and spatial scales in neuroscience

Basset, Nat Neuro 2017



Task-driven modeling: linking behavior to circuits

Neural code

Ecological niche

Environmental statistics



Machine learning Neuroscience

Architecture Circuits

Task / objective Ecological niche

Dataset Environment

Optimization method (learning 
rule)

Natural selection + synaptic 
plasticity 

ML model



Machine learning Neuroscience

Architecture Circuits

Task / objective Ecological niche

Dataset Environment

Optimization method (learning 
rule)

Natural selection + synaptic 
plasticity 

ML model



Vision: object recognition. 
Yamins & Hong et al. (2014), Schrimpf & 
Kubilius et al. (2018)

Audition: speech recognition, speaker & 
sound identification. Kell et al. (2018)

Somatosentation: shape recognition. 
Zhuang et al. (2017) Proprioception: action recognition. 

Sandbrink et al. (2023)

Decision making: context-dependent 
choice. Mante & Sussilo et al. (2013)

Using deep neural networks as goal-driven models of a system

Yamins & DiCarlo (2016) 

Language: next-word prediction. 
Schrimpf et al. (2021)



Reminder: Explaining edge detectors with sparse autoencoding

𝐼 𝑥, 𝑦 =෍

𝑖

𝑎𝑖 𝜙𝑖 𝑥, 𝑦 + 𝜖 𝑥, 𝑦

Olshausen & Field, 1996 Nature



Object recognition

▪ Recognizing objects seems easy, but

• we can recognize objects among thousands of possibilities

• we do so in the fraction of a second (Thorpe et al., 1996)

• we do so despite tremendous variation (size, angle, …)

▪ Recognizing objects must be hard,

• Half of the primate neocortex is devoted to vision (Felleman & Von Essen, 
1991)

• Despite all CV advances, machines still struggle with robust vision! I.e. on 
benchmarks like ImageNet, they are as good/better than humans but they 
are subject to adversarial robustness



Visual system

Felleman and Van Essen Cerebral Cortex 1991



Ventral visual pathway

DiCarlo, Neuron 2012



Kravitz et al. 2012

Increasing 
complexity along 
the visual ventral 
stream

https://pmc.ncbi.nlm.nih.gov/articles/PMC3532569/


IT neurons are nonlinear

Wang, Tanifuji, Tanaka 1998; Riesenhuber

Example neuron Model predictions (with max vs. sum)



What does IT do?

DiCarlo, Neuron 2012

Object-centric 
representations, 

invariance to viewpoint 
variations



How can we achieve invariance (to viewing 
parameters) & selectivity to identity?



Sketch of the HMAX model.

These two types of operations (max 

and linear sum) provided pattern 

specificity and invariance to

translation, by pooling over afferents 

tuned to different positions, and to 

scale (not shown), by pooling over 

afferents tuned to different scales.

Riesenhuber & Poggio, Nat Neuro 1999

This model is an extension of Hubel &Wiesel’s complex cell model 
and earlier work by Fukushima (Neocognitron).



Highly nonlinear response properties

Riesenhuber & Poggio, Nat Neuro 1999

IT recordings Model predictions (with max vs. sum)



Example higher-order visual cortex responses

Slide from Jim DiCarlo, MIT



Core-object recognition paradigm

Hong & Yamins et al., NatNeuro 2016



Decoding object identity from neural data

Hong & Yamins et al., NatNeuro 2016

Increasing difficulty

Increasing gap between V4 and IT



• Visual pathway: increased invariance to variations in viewpoint, culminating in most 
complexity in inferotemporal cortex (IT)

• Object preferences in IT

• Increased performance in object decoding with more IT sites (but not V4)

• Normative models in vision: learn neural activity via behavior

• HMAX as an early model of hierarchical invariance via simple and complex cells

Take-home messages part 2


